233 research outputs found

    Time scales of mesoscale variability and their relationship with space scales in the North Atlantic

    Get PDF
    A systematic study of characteristic time scales of mesoscale variability over the North Atlantic was done using two years of Geosat data. Time scales are first characterized by 10° latitude by 10° longitude bins. A more detailed description was obtained by globally mapping the Sea Level Anomaly temporal correlation after one cycle (17.05 days). The scales are shortest in areas of high mesoscale activity (Gulf Stream, North Atlantic Current) while relatively long time scales are observed over the Mid-Atlantic Ridge and in the eastern part of the basin. In general, time scales are not proportional to space scales. Propagation velocities obtained by dividing space scales by time scales appear to be minimal east of the Mid-Atlantic Ridge. Frequency-wavenumber spectral analysis complemented this statistical description of mesoscale variability. It shows that the dominant wavelengths of around 200 to 500 km (depending on latitude) are associated with long periods (\u3e150 days) in the eastern part of the basin, while near the Gulf Stream significant energy is found at shorter periods. Propagation velocities are generally westward. Pseudo-dispersion relations deduced from Geosat data suggest two distinct dynamic regimes, as in quasigeostrophic turbulence models: a turbulent regime for smaller scales, with proportionality between space and time scales, and an apparently more linear regime where an inverse dispersion relation is found in the eastern part of the basin. This latter characteristic is in agreement with quasigeostrophic models forced by fluctuating winds

    High resolution 3-D temperature and salinity fields derived from in situ and satellite observations

    Get PDF
    This paper describes an observation-based approach that efficiently combines the main components of the global ocean observing system using statistical methods. Accurate but sparse in situ temperature and salinity profiles (mainly from Argo for the last 10 yr) are merged with the lower accuracy but high-resolution synthetic data derived from satellite altimeter and sea surface temperature observations to provide global 3-D temperature and salinity fields at high temporal and spatial resolution. The first step of the method consists in deriving synthetic temperature fields from altimeter and sea surface temperature observations, and salinity fields from altimeter observations, through multiple/simple linear regression methods. The second step of the method consists in combining the synthetic fields with in situ temperature and salinity profiles using an optimal interpolation method. Results show the revolutionary nature of the Argo observing system. Argo observations now allow a global description of the statistical relationships that exist between surface and subsurface fields needed for step 1 of the method, and can constrain the large-scale temperature and mainly salinity fields during step 2 of the method. Compared to the use of climatological estimates, results indicate that up to 50% of the variance of the temperature fields can be reconstructed from altimeter and sea surface temperature observations and a statistical method. For salinity, only about 20 to 30% of the signal can be reconstructed from altimeter observations, making the in situ observing system essential for salinity estimates. The in situ observations (step 2 of the method) further reduce the differences between the gridded products and the observations by up to 20% for the temperature field in the mixed layer, and the main contribution is for salinity and the near surface layer with an improvement up to 30%. Compared to estimates derived using in situ observations only, the merged fields provide a better reconstruction of the high resolution temperature and salinity fields. This also holds for the large-scale and low-frequency fields thanks to a better reduction of the aliasing due to the mesoscale variability. Contribution of the merged fields is then illustrated to describe qualitatively the temperature variability patterns for the period from 1993 to 2009

    Contribution of future wide-swath altimetry missions to ocean analysis and forecasting

    Get PDF
    The impact of forthcoming wide-swath altimetry missions on the ocean analysis and forecasting system was investigated by means of OSSEs (observing system simulation experiments). These experiments were performed with a regional data assimilation system, implemented in the Iberian–Biscay–Ireland (IBI) region, at 1∕12° resolution using simulated observations derived from a fully eddy-resolving free simulation at 1∕36° resolution over the same region. The objective of the experiments was to assess the ability of different satellite constellations to constrain the ocean analyses and forecasts, considering both along-track altimeters and future wide-swath missions; consequently, the capability of the data assimilation techniques used in the Mercator Ocean operational system to effectively combine the different kinds of measurements was also investigated. These assessments were carried out as part of a European Space Agency (ESA) study on the potential role of wide-swath altimetry in future versions of the European Union Copernicus programme. The impact of future wide-swath altimetry data is evident for investigating the reliability of sea level values in OSSEs. The most significant results were obtained when looking at the sensitivity of the system to wide-swath instrumental error: considering a constellation of three nadir and two accurate (small instrumental error) wide-swath altimeters, the error in ocean analysis was reduced by up to 50&thinsp;% compared to conventional altimeters. Investigating the impact of the repetitivity of the future measurements, the results showed that two wide-swath missions had a major impact on sea-level forecasting – increasing the accuracy over the entire time window of the 5-day forecasts – compared with a single wide-swath instrument. A spectral analysis underlined that the contributions of wide-swath altimetry data observed in ocean analyses and forecast statistics were mainly due to the more accurate resolution, compared with along-track data, of ocean variability at spatial scales smaller than 100&thinsp;km. Considering the ocean currents, the results confirmed that the information provided by wide-swath measurements at the surface is propagated down the water column and has a considerable impact (30&thinsp;%) on ocean currents (up to a depth of 300&thinsp;m), compared with the present constellation of altimeters. The ocean analysis and forecasting systems used here are those currently used by the Copernicus Marine Environment and Monitoring Service (CMEMS) to provide operational services and ocean reanalysis. The results obtained in the OSSEs considering along-track altimeters were consistent with those derived from real data (observing system experiments, OSEs). OSSEs can also be used to assess the potential of new observing systems, and in this study the results showed that future constellations of altimeters will have a major impact on constraining the CMEMS ocean analysis and forecasting systems and their applications.</p

    A micropillar for cavity optomechanics

    Full text link
    We present a new micromechanical resonator designed for cavity optomechanics. We have used a micropillar geometry to obtain a high-frequency mechanical resonance with a low effective mass and a very high quality factor. We have coated a 60-Ό\mum diameter low-loss dielectric mirror on top of the pillar and are planning to use this micromirror as part of a high-finesse Fabry-Perot cavity, to laser cool the resonator down to its quantum ground state and to monitor its quantum position fluctuations by quantum-limited optical interferometry

    Baroreflex and Cerebral Autoregulation Are Inversely Correlated

    Get PDF
    Background:The relative stability of cerebral blood flow is maintained by the baroreflex and cerebral autoregulation (CA). We assessed the relationship between baroreflex sensitivity (BRS) and CA in patients with atherosclerotic carotid stenosis or occlusion.Methods and Results:Patients referred for assessment of atherosclerotic unilateral &gt;50% carotid stenosis or occlusion were included. Ten healthy volunteers served as a reference group. BRS was measured using the sequence method. CA was quantified by the correlation coefficient (Mx) between slow oscillations in mean arterial blood pressure and mean cerebral blood flow velocities from transcranial Doppler. Forty-five patients (M/F: 36/9), with a median age of 68 years (IQR:17) were included. Thirty-four patients had carotid stenosis, and 11 patients had carotid occlusion (asymptomatic: 31 patients; symptomatic: 14 patients). The median degree of carotid steno-occlusive disease was 90% (IQR:18). Both CA (P=0.02) and BRS (P&lt;0.001) were impaired in patients as compared with healthy volunteers. CA and BRS were inversely and strongly correlated with each other in patients (rho=0.58, P&lt;0.001) and in healthy volunteers (rho=0.939; P&lt;0.001). Increasing BRS remained strongly associated with impaired CA on multivariate analysis (P=0.004).Conclusions:There was an inverse correlation between CA and BRS in healthy volunteers and in patients with carotid stenosis or occlusion. This might be due to a relative increase in sympathetic drive associated with weak baroreflex enhancing cerebral vasomotor tone and CA

    Free-space cavity optomechanics in a cryogenic environment

    No full text
    International audienceWe present a free-space optomechanical system operating in the 1-K range. The device is made ofa high mechanical quality factor micropillar with a high-reflectivity optical coating atop, combinedwith an ultra-small radius-of-curvature coupling mirror to form a high-finesse Fabry-Perot cavityembedded in a dilution refrigerator. The cavity environment as well as the cryostat have beendesigned to ensure low vibrations and to preserve micron-level alignment from room temperatur

    The Oceanic Variability Spectrum and Transport Trends

    Get PDF
    Oceanic meridional transports evaluated over the width of the Pacific Ocean from altimetric observations become incoherent surprisingly rapidly with meridional separation. Even with 15 years of data, surface slopes show no significant coherence beyond 5◩ of latitude separation at any frequency. An analysis of the frequency/zonal-wavenumber spectral density shows a broad continuum of motions at all time and space scales, with a significant excess of energy along a “non-dispersive” line extending between the simple barotropic and first baroclinic mode Rossby waves. It is speculated that much of that excess energy lies with coupled barotropic and first mode Rossby waves. The statistical significance of apparent oceanic transport trends depends upon the existence of a reliable frequency/wavenumber spectrum and for which only a few observational elements now exist.Jet Propulsion Laboratory (U.S.).United States. National Aeronautics and Space Administration (Jason-1 program)National Oceanographic Partnership Program (U.S.

    Use of satellite observations for operational oceanography: recent achievements and future prospects

    Get PDF
    The paper gives an overview of the development of satellite oceanography over the past five years focusing on the most relevant issues for operational oceanography. Satellites provide key essential variables to constrain ocean models and/or serve downstream applications. New and improved satellite data sets have been developed and have directly improved the quality of operational products. The status of the satellite constellation for the last five years was, however, not optimal. Review of future missions shows clear progress and new research and development missions with a potentially large impact for operational oceanography should be demonstrated. Improvement of data assimilation techniques and developing synergetic use of high resolution satellite observations are important future priorities
    • 

    corecore